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menting other scheduling objectives, such as the minimization of buffering requirements, in a

manner that is guaranteed not to interfere with code compaction goals. We have defined a class of

SDF graphs called tightly interdependent graphs. Schedules for arbitrary SDF graphs can be con-

structed such that each block that is not contained in a tightly interdependent subgraph appears

only once, and thus requires only one instance of its code block to appear in the target program.

Our framework defines a broad class of scheduling algorithms that construct such schedules.

Our observations suggest that the vast majority of practical SDF graphs do not contain any

tightly interdependent subgraphs, and thus that our scheduling framework guarantees optimal pro-

gram compactness for most cases. However, we are also investigating how to schedule general

tightly interdependent subgraphs compactly. New techniques that are developed for tightly inter-

dependent graphs can easily be incorporated within our scheduling framework, since the frame-

work modularizes the scheduling of tightly interdependent subgraphs: the algorithm used to

schedule tightly interdependent subgraphs, called the “tight interdependence algorithm” never

interacts with other parts of the overall scheduling algorithm, and the tight interdependence algo-

rithm completely determines the amount of program memory required for the tightly interdepen-

dent subgraphs.
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schedule, each sample produced by X is consumed by Y in the same loop iteration, so these data

transfers can occur through a single machine register. Thus, the clustering of X and Y saves 10

words of memory for the data transfers between X and Y, and it allows these transfers to be per-

formed through machine registers, which will usually result in faster code.

We have implemented a clustering process based on conditions 1-4. This clustering algo-

rithm can be performed very efficiently since it requires only local dataflow information — it uses

only the production, consumption and delay parameters of the arcs between the two candidate

adjacent nodes. Since many practical dataflow blocks — such as forks, gains, trigonometric func-

tions, and a large class of filtering operations — have only one input, condition (4) is often satis-

fied. Furthermore, since connected subgraphs of computations operating at the same sample-rate

are common [8], our clustering technique can be applied frequently in practice. Finally, from our

observations, most practical SDF graphs have single appearance schedules. Since clustering

based on conditions 1-4 preserves the existence of a single appearance schedule, it preserves opti-

mal code compactness for the common case.

6 Conclusion

We have developed a code scheduling framework for compiling synchronous dataflow

graphs into compact target programs through the careful organization of loops, and for imple-
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Fig 9. An example of clustering to make data transfers more efficient.
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connected component may be deadlocked, or it may contain a tightly interdependent subgraph.

For example in figure 7, this rule would reject the clustering of X and Y since there is a path

between these nodes that passes through Z.

This conservative but efficient rule can be applied outside of acyclic subgraphs with a few

more restrictions. If there are one or more arcs directed from a node X to another node Y, then it

can be shown that clustering X and Y does not introduce nor extend a tightly interdependent com-

ponent if the following conditions hold1:

(1) Neither X nor Y is contained a tightly interdependent component.

(2) At least one arc directed from X to Y has zero delay.

(3) X and Y are invoked the same number of times in a periodic schedule.

(4) Y has no predecessors other than X or Y; that is, there is no arc directed from a node

other than X or Y to Y.

In other words, if conditions 1-4 hold, and we cluster X and Y, then the tightly interdepen-

dent components of the resulting graph are the same as those of the original graph. An important

special case occurs when the original graph has a single appearance schedule. In this case, we can

apply any number of adjacent-node clusterings that satisfy 1-4, and the resulting graph will also

have a single appearance schedule.

One important practical use of this clustering rule is to increase the number of data trans-

fers that occur in machine registers, rather than through memory. Figure 9 shows a simple exam-

ple. One possible single appearance schedule for the SDF graph in figure 9(a) is (10 X) (10 Y) Z

V (10 W). This schedule, which is the optimal schedule with respect to the minimum activation

criterion of Ritz. et. al. [16], is inefficient. Due to the loop that specifies ten successive invocations

of X, the data transfers between X and Y cannot take place in machine registers, and 10 words of

data-memory are required for the arc connecting X and Y. However, observe that conditions 1-4

hold for the pairs {X, Y} and {Z, V}. Thus we can safely cluster these pairs of nodes without can-

celling the existence of a single appearance schedule. This clustering, shown in figure 9(b), leads

to the single appearance schedule (10 Ω2) Ω1 (10 W) ⇒ (10 X Y) Z V (10 W). In this second

1.  We emphasize that these conditions are sufficient, but not necessary.
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Now if we cluster X and Y, we obtain the hierarchical tightly interdependent SDF graph in

figure 8(b). It can easily be verified that the only minimal periodic schedule for this SDF graph is

ΩZΩ, which leads to the schedule XYZXY for figure 8(a). Thus, the clustering of X and Y

increases the minimum number of appearances of X in the schedule. This can be critical if X has a

very large code block because it would make in-line code impractical.

A cluster that introduces a new tightly interdependent component, as in figure 7, always

degrades code compactness potential: the optimally compact schedule for the clustered graph will

be larger than that of the original graph. However, extending a tightly interdependent component

is not always detrimental. As a simple example, it is not detrimental when the cluster is invoked

only once for each invocation of the enlarged tightly interdependent component. This is the case if

the arc from X is directed to Z instead of Y, as shown in figure 8(c). Here, clustering X and Z

results in the schedule YXZY, which contains only one appearance of X and Z.

The possible introduction or enlargement of tightly interdependent components adds an

additional consideration when incorporating a clustering algorithm into a loose interdependence

algorithm. For example, consider the heuristic technique described in [1] for constructing looped

schedules with manageable buffering requirements. As described before, this technique repeat-

edly clusters the pairs of adjacent nodes whose associated subgraphs have the highest invocation

count. Only clustering candidates that cause deadlock are rejected.

This technique can be applied to the acyclic scheduling algorithm of a loose interdepen-

dence algorithm, but it must be modified to take into consideration whether or not a clustering

candidate introduces tight interdependence (as in figure 7). This involves detecting whether or not

the cluster introduces a strongly connected component in the originally acyclic graph, and then

repeatedly applying subindependence partitioning. If decomposition terminates at a tightly inter-

dependent subgraph, the clustering candidate must be rejected.

This check is computationally expensive. An alternative is to simply disallow a cluster of

two adjacent nodes when there is a path from the source node to the sink node that passes through

at least one other node. In such cases, the cluster will introduce one or more directed cycles in the

originally acyclic graph, and depending on the delays on the arcs involved, the resulting strongly
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Now it can easily be verified that figure 7(b) is tightly interdependent. Thus any schedule

based on this clustering decision will have more than one appearance of at least one block. In this

case, the subschedule for {X, Y} will appear twice. However, the original graph, figure 7(a), has a

single appearance schedule, since it is acyclic. So we see that although the clustering in figure 7

does not result in deadlock, it introduces a tightly interdependent subgraph, and thus it leads to

less compact schedules.

Similarly, clustering a node that is not in any tightly interdependent subgraph with part of

a tightly interdependent component can be detrimental. Such a cluster increases the extent of an

existing tightly interdependent component. This is illustrated in figure 8. In figure 8(a) {Y, Z}

forms a tightly interdependent component, and node X is not contained in any tightly interdepen-

dent subgraph. From property 3 of loose interdependence algorithms, any loose interdependence

algorithm schedules figure 8(a) with only one appearance of X.
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maintaining code-size compactness. We have implemented such a combined program- and data-

memory minimizing scheduler within the software synthesis environment for DSP that we have

developed under Ptolemy [12].

Our observations suggest that for practical SDF graphs, tightly interdependent subgraphs

are rare, and thus for most applications, any loose interdependence algorithm generates optimally

compact schedules. However, we are investigating techniques to schedule tightly interdependent

SDF graphs compactly to provide a more general solution. Improved methods for handling tightly

interdependent components can be incorporated simply by replacing the tight scheduling algo-

rithm of a loose interdependence algorithm.

5 Clustering in a Loose Interdependence Algorithm

We refer to the process of consolidating subgraphs as atomic units for scheduling, as illus-

trated in figure 6(d), as clustering. We have already shown in this paper how repeatedly clustering

based on subindependence leads to provably compact programs. In [1], we also apply clustering

to decrease data memory requirements for iterative schedules. In this section, we show that cer-

tain clustering decisions can interfere with code-minimization goals, and thus that if any cluster-

ing is to be incorporated into a loose interdependence algorithm — as a preprocessing step or as

part of one of the component algorithms A1, A2, A3 — then the possible negative effect on code

compactness should be considered. We also present examples of how useful clustering techniques

can be adapted to work in accordance with code minimization objectives.

A clustering decision always degrades the code-compaction potential of an SDF graph if it

introduces a new tightly interdependent subgraph that is disjoint from the existing tightly interde-

pendent components. For example, consider the acyclic SDF graph in figure 7(a), and suppose

that we cluster the adjacent nodes X and Y into the hierarchical node Ω, as shown in figure 7(b).

This is precisely the clustering that would be performed by the data-memory minimizing heuristic

of [1], which clusters the pairs of adjacent nodes that are invoked most frequently, provided that

the clustering does not introduce deadlock.
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Property 2: Any loose interdependence algorithm constructs a single appearance schedule

when one exists.

Property 3: If B is a node in the input SDF graph G, and B is not contained in a tightly

interdependent component of G, then any loose interdependence algorithm schedules G in such a

way that B appears only once.

Property 4. If B is a node within a tightly interdependent component of the input SDF

graph, then the number of times that B appears in the schedule generated by a loose interdepen-

dence algorithm is determined entirely by its tight scheduling algorithm.

Property 4 states that the effect of the tight interdependence algorithm (A3) is independent

of the subindependence partitioning algorithm (A2), and vice-versa. Any subindependence parti-

tioning algorithm makes sure that there is only one appearance for each node outside the tightly

interdependent components, and the tight scheduling algorithm completely determines the num-

ber of appearances for nodes inside the tightly interdependent components. For example, if we

develop a new subindependence partitioning algorithm that is more efficient in some way (e.g. it

is faster, or reduces data memory requirements more), we can substitute it for any existing sub-

independence partitioning algorithm without changing the “compactness” of the resulting sched-

ules — we don’t need to analyze its interaction with the rest of the loose interdependence

algorithm. Similarly, if we develop a new tight scheduling algorithm that schedules any tightly

interdependent graph more compactly than the existing tight scheduling algorithm, we are guaran-

teed that using the new algorithm instead of the old one will lead to more compact schedules over-

all.

Thus the class of loose interdependence algorithms defines a framework for implementing

memory-minimizing schedulers. We have freedom to experiment with the component algorithms

— the acyclic scheduling algorithm, subindependence partitioning algorithm, and tight schedul-

ing algorithm — while the framework guarantees that the interaction of these algorithms will not

hinder the full code-size minimization potential offered by subindependence partitioning. For

example, the heuristic techniques of [1] can be incorporated into the acyclic scheduling algorithm

or the tight interdependence algorithm to produce large savings in buffering requirements, while
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Step 1: For each node N in G, determine the minimum number of
times, q(N), that N is invoked in a periodic schedule for G.
Step 2: Determine the strongly connected components
G1, G2, …, Gs of G.

Step 3: Cluster G1, G2, …, Gs and call the resulting graph G'.

This is an acyclic graph.

Step 4: Apply A1 to G'; denote the resulting schedule S'(G).

Step 5:
for i = 1, 2, …, s

Apply A2 to Gi;

if subgraphs X and Y are found such that X is

subindependent of Y in Gi,

then

• Recursively apply algorithm L to subgraph X; the

resulting schedule is denoted SL(X).

• Recursively apply algorithm L to subgraph Y; the

resulting schedule is denoted SL(Y).

• Let rx = gcd{q(N)| N is a node in X}1.

• Let ry = gcd{q(N)| N is a node in Y}.

• Replace the (single) appearance of Gi in S'(G)

with (rx SL(X)) (ry SL(Y)).

else (Gi is tightly interdependent)

• Apply A3 to obtain a valid schedule Si for Gi.

• Replace the single appearance of Gi in S with Si.

end-if

end-for

Output S'(G).

Given a loose interdependence algorithm λ = L(A1, A2, A3), we refer to A1, A2, and A3

respectively as the acyclic scheduling algorithm of λ, the subindependence partitioning algorithm

of λ, and the tight scheduling algorithm of λ. The following useful properties of loose interdepen-

dence algorithms are proved in [2].

Property 1: Efficient loose interdependence algorithms exist. In particular, there are loose

interdependence algorithms whose overall time complexity is quadratic in max(n, e), where n is

the number of nodes in the input SDF graph, and e is the number of arcs.

1.  This is the number of times that G invokes the subgraph X; “gcd” denotes the greatest common divisor.
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For example, consider the technique described in section 2 where we remove arcs having

“sufficient” delay and then cluster the strongly connected components of the resulting graph G'.

Since any root strongly connected component R1 of G' is subindependent, any tightly interdepen-

dent component T is either completely contained in R1 or completely contained in the comple-

ment (G' − R1) of R1
1. If R1 = T, then we can decompose R1 no further — this branch of the

overall decomposition process terminates at R1, and conversely if R1 properly contains T, then R1

must be loosely interdependent (otherwise T would not be a maximal tightly interdependent sub-

graph), so we can further subdivide R1 via subindependence.

Similarly, if (G' − R1) contains T, and R2 is a strongly connected component at the root of

(G' − R1), then R2 contains T or (G' − R1 − R2) contains T. Clearly, by repeatedly applying this

process, we will eventually arrive at a strongly connected component Rn that contains T. Further-

more, we will be able subdivide Rn further if and only if Rn properly contains T. Thus we see that

this recursive subindependence decomposition method terminates at each of the unique tightly

interdependent components of the original SDF graph.

4 Loose Interdependence Algorithms

Our memory-minimizing scheduling framework is based on a class of scheduling algo-

rithms that we call loose interdependence algorithms. Given any algorithm A1 for construct-

ing a single appearance schedule for an acyclic SDF graph; any algorithm A2 that determines

whether a strongly connected SDF graph is loosely interdependent, and if so, finds a subindepen-

dent partition; and any algorithm A3 that constructs a valid schedule for a tightly interdependent

SDF graph, we define the loose interdependence algorithm associated with (A1, A2, A3), denoted

L(A1, A2, A3), as the following algorithm:

Algorithm L(A1, A2, A3)

Input: an SDF graph G.
Output: a valid looped schedule SL(G) for G.

1.  Strictly speaking, either the set of nodes in T is a subset of the set of nodes in R1, or it is a subset of the set of nodes in (G' −
R1).
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ity for a subindependence-based scheduling algorithm. This is the form in which we have imple-

mented subindependence partitioning.

3 Loose and Tight Interdependence

If we can partition a strongly connected SDF graph G into two subgraphs such that one

subgraph is subindependent of the other, then we say that G is loosely interdependent, and if a

strongly connected SDF graph is not loosely interdependent, then we say that it is tightly inter-

dependent. For example, the SDF graph in figure 5(a) is loosely interdependent. However, if we

move one of the two delays to the lower arc, then the resulting graph, depicted in figure 5(b), is

tightly interdependent — there is no way to partition this graph so that one part of the partition is

subindependent of the other.

It can be shown that a tightly interdependent SDF graph never has a single appearance

schedule, and an arbitrary SDF graph has a single appearance schedule if and only if it contains no

tightly interdependent subgraphs. Thus, the graph in figure 5(b), and any SDF graph that contains

this as a subgraph, does not have a single appearance schedule.

Another important property of tight interdependence is that it is additive: the union of two

intersecting tightly interdependent SDF graphs is also tightly interdependent. Thus each SDF

graph has a unique set of maximal connected tightly interdependent subgraphs, which we call its

tightly interdependent components.

Finally, subindependent partitioning cannot “break up” a tightly interdependent compo-

nent: if G is a strongly connected SDF graph, T is a tightly interdependent subgraph of G, and P1

is subindependent of P2 in G, then T is a subgraph of P1, or T is a subgraph of P2. An important

consequence of this property is that for a given SDF graph, all subindependence-based decompo-

sition techniques will terminate at the same subgraphs. With any subindependence partitioning

algorithm, we will be able to repeatedly decompose an SDF graph until we are left only with the

tightly interdependent components.
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We can generalize this decomposition technique to get more scheduling flexibility. If we

cluster each strongly connected component of G' then the resulting SDF graph is acyclic. This

clustering process is illustrated in figure 6(d). Here the strongly connected components {V, W}

and {X, Y} have been replaced by single nodes SCC1 and SCC2 respectively, and the SDF param-

eters on the input and output arcs of each SCCi have been adjusted to reflect the total number of

samples produced or consumed through one invocation of the subgraph SCCi. For example, a

minimal periodic schedule for {X, Y} invokes Y 10 times, so the number of samples produced on

the arc directed from Y to Z is adjusted by a factor of 10.

We can construct a valid schedule for the graph in figure 6(a) by first constructing a sched-

ule for the acyclic clustered graph of figure 6(d), and then replacing each appearance of an SCCi

with a minimal periodic schedule for that subgraph. The clustered graph in figure 6(d) reveals all

possible subindependence partitions for the original graph: {SCC1} is subindependent of {SCC2,

Z}, and {SCC1, SCC2} is subindependent of {Z}. Since the subindependence partition affects the

final schedule, we see that clustering the strongly connected components allows the most flexibil-
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